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Abstract. The analytical properties of the photon polarization operator in the quark vacuum was analyzed.
Branching points of the polarization operator were found and its imaginary part was calculated. Quantum
transitions between quark states and the turning over of a quark’s color spin in a chromomagnetic field
were predicted. The negative values of the photon energy and the contribution of the photon zero energy
to the branching point were taken into account

Introduction

The investigation of the QCD vacuum is one of the cur-
rent research areas in QCD. It is known that there are
quark and gluon condensates in the QCD vacuum. These
condensates are created with around them a color back-
ground; they play an important role in studies of the vac-
uum state. There are different models taking this back-
ground into account. The simplest and best investigated
model is the vacuum in a constant chromomagnetic field.
As we know, there are two ways of defining a non-abelian
background: as a covariant constant field and as a field
given by non-commuting vector potentials [1,12]. A great
amount of works were devoted to the investigation of the
vacuum properties, given the background field in terms
of non-commuting potentials. It was found that the vac-
uum state in a constant chromomagnetic field, given by
non-commuting potentials, is stable [9] and has a compli-
cated topological structure [8]. These fields do not lead to
spontaneously breaking of the chiral symmetry [11] etc.

A good tool for investigating the quark sector of the
QCD vacuum is the photon polarization operator (PO)
in a chromomagnetic field. From this some interesting in-
formation had been received. For example, in the SU(2)
color group frame, it was observed that the PO in a spheri-
cal symmetric chromomagnetic field has an antisymmetric
imaginary part [3]. This has been interpreted in [5] as a
turning of the polarization plane of a photon in the chro-
momagnetic background (Faraday effect). The dispersion
method [2] turned out to be very effective in exact calcu-
lating the imaginary part of the PO in the one-loop ap-
proximation [4,6]. Furthermore, this method was applied
to calculations in the SU(3) color symmetry group [7]. But
in all previous works [2,4,6,7] only the photon positive
energy sector was studied, so not all effects taking place
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in the QCD vacuum with a chromomagnetic background
have been revealed.

The aim of present work is to indicate the existence of
one more vacuum phenomenon, namely the turning over
of the color spin of vacuum quarks accompanying photon
radiation or absorption, and the existence of new branch-
ing points of the PO corresponding to this phenomenon
and to the photon’s zero energy.

1 Green function of a quark
in a chromomagnetic field

As noted before, a constant color background can be given
by abelian or non-abelian vector potentials. In particular,
non-abelian potentials giving a constant chromomagnetic
field directed along the third axes of the ordinary and
SU(3) color spaces has the form

Aµ = Aµ
a

λa

2
, Aµ

a = τ1/2δµ
a a, µ = 1, 2,

A0
a = A3

a = 0, a = 3, · · · , 8, τ = const. (1.1)

Here λa are the Gell-Mann matrices, Latin indices act
in color space, and Greek ones are the Lorentz indices.
For the potentials (1.1) only one component of the field
strength tensor F a

µν differs from zero:

F 3
12 = H3

z = gτ, and for the other F a
µν = 0.

(g is the color interaction constant.)
In order to take into account the background (1.1) in

the Green function of a quark we should have made the
replacement pµ → Pµ = pµ + gAµ in the expression

S(P ) =
1

γµPµ −m
.
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After some simple transformations we get the form

S(P ) = (γµP
µ +m)

[
Λ1 − 2gpµA

µ − gF 3
12Σ

12λ
3

2

]

× I2
(p2

0 − E2
1)(p

2
0 − E2

2)
+

γµpµ +m

p2
0 − E2

0
I3

= SSU(2)(P ) + SU(1)(P ), (1.2)

E2
0 = p2 +m2,

E2
1,2 = p2 +m2 +

g2τ

2
± gτ1/2

√
p2

⊥ +
g2τ

2
,

Σ12 = iγ1γ2,

Λ1 = p2 −m2 − g2τ

2
,

I2 =


1 0 0
0 1 0
0 0 0


 ,

I3 =


0 0 0
0 0 0
0 0 1


 ,

p2
⊥ = p2

1 + p2
2;

here the matrices I2 and I3 are defined in color space.
As we see from (1.2), the Green function of a quark in

the background (1.1) is broken down into the SU(2) and
U(1) terms that have been found earlier in [6]. The main
advantage of expression (1.2) from the Green function ob-
tained in [9] is that its pole part is separated from the
matrix structure. This allows us to apply the dispersion
method for the PO in the calculation [2].

From (1.2) it is clear too that the quark energy spec-
trum in the background (1.1) is split into three branches,
E0, E1, E2. The state E0 is similar to the free quark state,
E1 and E2 correspond to states where the projection of
the quark’s color spin T a = λa/2 on the color vector

Ia = 2Aµ
apµ + gF a

µνΣ
µν (1.3)

has a positive or negative sign, i.e. the sign of the last term
in E2

1,2 is defined by the scalar product (T aIa). It should
be noted that the state E0 is absent in SU(2) theory and
the vector Ia has the same form [6].

Threshold values of the energy for pair creation of a
quark and antiquark from the same energy branch are
(a) t0 = (2E0)2min = 4m2,
(b) t1 = (2E2)2min = 4m2,
(c) t2 = (2E1)2min = 4(m2 + g2τ);
for pair creation of a quark and antiquark from different
branches of the energy spectrum
(d) t3 = (E0 + E2)2min = 4m2,
(e) t4 = (E0 + E1)2min = 2m2 + g2τ + 2m(m2 + g2τ)1/2,
(f) t5 = (E1 + E2)2min = 2m2 + g2τ + 2m(m2 + g2τ)1/2;
and for the energy gap between these branches
(g) t6 = (E1 − E2)2min = 2m2 + g2τ − 2m(m2 + g2τ)1/2

(h) t7 = (E2 − E0)2min = 0
(i) t8 = (E1 − E0)2min = 2m2 + g2τ − 2m(m2 + g2τ)1/2.
(1.4) As we see from (1.4a), (1.4b) and (1.4d) at threshold

k
�

Fig. 1. A diagram of the photon PO in the one-loop approxi-
mation

energies t0 pairs may be created from the branches E0
and/or E2, from (1.4e) and (1.4f) at energies t4 from E1
and E0 (or E2).

2 Analytical properties
of the photon polarization operator

A diagram of the photon PO in the one-loop approxima-
tion is drawn in Fig. 1. The internal lines are quark lines in
the chromomagnetic field. According to Feynman’s rules
the PO can be written as in the following expression:

Πµ
ν = −ie2

∫
d4p

(2π)4
Sp {γµS(P )γνS(P − k)}. (2.1)

We shall study the trace of the PO, Πµ
µ = Π(k2, τ), be-

cause its imaginary part is connected with physical pro-
cesses. Substituting the Green function (1.2) into (2.1) we
see that the photon PO in the background (1.1) is broken
down into SU(2) and U(1) parts too, because of I2I3 = 0,
I2
2 = I2, I

2
3 = I3. We have

Πµ
ν [SU(3)] = Πµ

ν [SU(2)] +Πµ
ν [U(1)]. (2.2)

After taking traces over the γµ and λa matrices we obtain

Πµ
µ (k

2) (2.3)

= − ie2

(2π)4

∫
d4p
{{16f1 (p, k)}/

{(
p2
0 − E2

1
)

× (p2
0 − E2

2
) (

(p0 − k0)
2 − E2

3

)(
(p0 − k0)

2 − E2
4

)}
+ {8f2 (p, k)}/

{(
p2
0 − E2

0
) (

(p0 − k0)
2 − E2

5

)}}
,

f1(p, k) =
(
2m2 − p (p − k)

) (
Λ1Λ2 + g2τpi (p − k)i

)
+

g2τ

2
Λ1

(
pi (p − k)i + (p − k)2⊥ +

g2τ

2

)

+
g2τ

2
Λ2

(
pi (p − k)i + p2

⊥ +
g2τ

2

)
+

(
g2τ
)2

4

×
(
p2

⊥ + (p − k)2⊥ + 2pi (p − k)i + p (p − k)
)

+
g2τ

2
Λ1Λ2 +

(
g2τ
)3

8
,

f2(p, k) = 2m2 − p(p − k), i = 1, 2,
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Fig. 2. Invoking the causality principle in the Green function

Λ2 = (p − k)2 −m2 − g2τ

2
,

E2
3,4 = (p − k)2 +m2 +

g2τ

2

± gτ1/2

√
(p − k)2⊥ +

g2τ

4
,

E2
5 = (p − k)2 +m2, p2 = p2

0 − p2.

It is known that the photon PO in an external field is
a function of the Lorentz invariants k2, kµF

µνFναk
α and

the field invariants [10]. However, all invariants of the field
(1.1) are reduced to only different powers of the constant
g2τ and the dependence on them is not interesting for us.
We shall study analyticity of the Π(k2) = Πµ

µ function in
the whole complex plane of t = k2.

The function Π(t) is single-valued in every point of the
real t axis. In order to continue it onto complex values of
t, it must single-valuedly be determined in every point of
the complex t plane. At first let us consider the t > 0 area
(k2

0 > k2, a timelike photon). In this area we choose the
reference frame k = 0 and assume the field (1.1) given at
this reference frame. (When passing to any other frame
field (1.1) will acquire a chromoelectric component too.)
In the frame k = 0 the variable t is t = k2

0 and does not
depend on the sign of k0. (Because of this the function
Π(t) was investigated only in the k0 > 0 area in [2,4,6,
7].) As we will see later, the sign of the photon energy
should be understood in terms of its absorption on k0 > 0
and as its emission on k0 < 0, and the area k0 < 0 must
be considered at the same instant as the area k0 > 0. We
shall consider −∞ < k0 < +∞ and assume k0 < −2E1.

Let us separate integration over p0, as we see from (2.3)
that all singularities of the function Π(t) are situated in
the p0 plane:

Π (t) =
∫

d3pJ

=
∫

d3p

(
− ie2

(2π)4

)∫
c

dp0 {{16f1 (p, k0)}

/
{(

p2
0 − E2

1
) (
p2
0 − E2

2
) (

(p0 − k0)
2 − E2

1

)
×
(
(p0 − k0)

2 − E2
2

)}
+ {8f2 (p, k0)}

/
{(

p2
0 − E2

0
) (

(p0 − k0)
2 − E2

0

)}}
. (2.4)
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Fig. 3. Illustrating contour C on adding an infinitely small
imaginary value iε to the variable t

From (2.4) it is seen that the integrand has poles at the
following values of p0:

p
(1),(2)
0 = ±E1, p

(3),(4)
0 = ±E2, p

(5),(6)
0 = k0 ± E1,

p
(7),(8)
0 = k0 ± E2, p

(9),(10)
0 = ±E0,

p
(11),(12)
0 = k0 ± E0, (2.5)

and the rule for path-tracing is given by the causality prin-
ciple in the Green function (Fig. 2). It should be noted that
the locations of the poles p(7)

0 and p
(5)
0 principally differ

from [6,7] because of the assumption k0 < −2E1. The
poles p(1)

0 , p
(3)
0 and p(9)

0 are located at a finite distance from
the rest ones. When adding an infinitely small imaginary
value iε to the variable t, the poles p(5),(6)

0 , p
(7),(8)
0 , p

(11),(12)
0

will be displaced and by deforming the contour C they can
avoid the intersection of contour C (Fig. 3). Let us observe
the motion of these poles while k0 is increasing. They all
move along the p0 axis from the left to the right.
(1) At k0 → (E0 − E1) < 0 the pole p

(5)
0 will approach

the pole p(9)
0 and the contour C will be squeezed by these

poles (Fig. 4a). Avoiding intersection of contour C by the
pole p(5)

0 while adding iε to the variable t and consequently
having a single-valued continuation of the function Π(t)
onto complex values of t becomes impossible. This circum-
stance could be eliminated by cutting the t plane along
the real t axis since the point t = (E0 − E1)2min = t8
and the function Π(t) will have two branches, Π(t + i0)
and Π(t − i0). This means that the point t = t8 is the
branching point of the function Π(t). Now the function
Π(t) is single-valued at every sheet of the t plane and it
is possible to continue it to complex values of t analyti-
cally. But the contour C must be divided into two parts:
C = C1 + C

(1)
0 (Fig. 4b). However, on further increasing

of k0, more exactly
(2) at k0 → (E2 − E1) < 0, the pole p

(5)
0 together with

p
(3)
0 will squeeze the contour C(1)

0 . One other branching
point arises at t = (E2 − E1)2min = t6. Repeating the
above analysis for a further increase of k0 from the pole
structure (see (2.5) and Fig. 2), more branching points of
Π(t) could be received because of squeezing of the next
contours by the corresponding poles:
(3) k0 → (E0−E2) < 0, t = (E0−E2)2min = t7; the contour
C1 = C2 + C

(2)
0 , the poles p(7)

0 and p
(9)
0 ;
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Fig. 4a–c. (a) Poles and contour with k0 → (E0 − E1) < 0;
(b) division of contour in C = C1 + C

(1)
0 and (c) in C =

C6 +
6∑

i=1
C

(i)
0

(4) k0 → 0, t = 0 = t9; the contour C2 = C3 + C
(3)
0 , the

poles p(11)
0 and p

(9)
0 ;

(5) k0 → (E2 − E0) > 0, t = (E2 − E0)2min = t7; the
contour C(3)

0 , the poles p(11)
0 and p

(4)
0 ;

(6) k0 → (E1 − E2) > 0, t = (E1 −E2)2min = t6; the
contour C(2)

0 , the poles p(7)
0 and p

(1)
0 ;

(7) k0 → (E1 −E0) > 0, t = (E1 − E0)2min = t8; the
contour C(3)

0 , the poles p(11)
0 and p

(1)
0 ;

(8) k0 → 2E0 > 0, t = (2E0)2min = t0; the contour C3 =
C4 + C

(4)
0 , the poles p(12)

0 and p
(9)
0 ;

(9) k0 → (E0 + E2) > 0, t = (E0 +E2)2min = t3; the
contour C4 = C5 + C

(5)
0 , the poles p(8)

0 and p
(10)
0 ;

(10) k0 → 2E2 > 0, t = (2E2)2min = t1; the contour C(5)
0 ,

the poles p(8)
0 and p

(3)
0 ;

(11) k0 → (E0 + E1) > 0, t = (E0 + E1)2min = t4; the
contour C5 = C6 + C

(6)
0 , the poles p(6)

0 and p
(9)
0 ;

(12) k0 → (E1 + E2) > 0, t = (E1 + E2)2min = t5; the
contour C(6)

0 , the poles p(6)
0 and p

(3)
0 ;

(13) k0 → (2E1) > 0, t = (2E1)2min = t2; the contour
C

(6)
0 , the poles p(6)

0 and p
(1)
0 . In the end the contour C is

divided into seven parts C = C6 +
6∑

i=1
C

(i)
0 (Fig. 4c).

So, taking into account k0 < 0, we get ten branching
points instead of three [6,7]. If we assume k0 > 0 at the
beginning of our analysis and observe the motion of the
poles in the opposite direction, i.e. with k0 → −∞, we
see that the branching points (8)–(13) arise on negative
values of k0 as well,
(14) k0 = −2E0,
(15) k0 = −(E0 + E2),
(16) k0 = −(E0 + E1),
(17) k0 = −2E2,
(18) k0 = −(E1 + E2),
(19) k0 = −2E1,
because of squeezing of the contour. All photon energies
(1)–(19) have a physical meaning and correspond to a
physical phenomenon.

For the whole investigation of the analytical contin-
uation of the function Π(t) we should consider negative
values of t too. For the area t < 0 (k2

0 < k2, a space-
like photon) we may choose a reference frame in which
k0 = 0, t = −k2. Then the integrand in (2.3) has the fol-
lowing poles:

p
(1),(2)
0 = ±E1, p

(3),(4)
0 = ±E2, p

(5),(6)
0 = ±E3,

p
(7),(8)
0 = ±E4, p

(9),(10)
0 = ±E0,

p
(11),(12)
0 = ±E5.

While adding an infinitely small imaginary value iε to the
variable k2, the poles p(5)

0 –p(8)
0 and p

(11),(12)
0 will be dis-

placed and approach the contour C. However, even num-
bered poles will remain at a finite distance from the odd
numbered ones at every value of k2

(
d = p

(i)
0 − p

(j)
0 =

Ei − (−Ej) = Ei + Ej > 0
)
.

By deforming of the contour C we could avoid its in-
tersection by the poles, and there is no contour squeezing
by the poles. Consequently, there are no branching points
of Π(t) at the t < 0 area and the function Π(t) may be
single-valuedly continued to the complex half-plane t < 0.

3 The imaginary part
of the polarization operator

Let us calculate the imaginary part of the PO using the
above analysis. Namely ImΠ(t) is connected with the full
cross section of the e+e− annihilation into hadrons in the
condensate background, with virtual photon decay to a
quark–antiquark pair. Besides, knowing ImΠ(t) due to the
dispersion relation (see [2,6,7])

Π(t) =
t2

π

∫
dx

ImΠ(x)
x2(x2 − t)

,

the real part of Π(t) could be found as well.
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From (2.4) we have seen that at real values of t the
function Π(t) is real, i.e. Π(t∗) = Π∗(t). Near the cut-
line this will be

Π(t − i0) = Π∗(t+ i0) (3.1)

Using (3.1) the relation between the jump of the Π(t)
function when passing the cut-line and its imaginary part
could be found:

∆Π(t) = Π(t+ i0) −Π(t − i0)
= Π(t+ i0) −Π∗(t+ i0)
= 2iImΠ(t). (3.2)

From the jump definition (3.2) it can be seen that only
the integrals over the contours C(i)

0 will contribute to the
jump ∆Π(t), because integrals over the Ci contours will
mutually cancel:

J0 = − ie2

(2π)4

∫
∑

i
c
(i)
0

dp0
{{8f2 (p, k0)}/

{(
p2
0 − E2

0
)

×
(
(p0 − k0)

2 − E2
0

)}
+ {16f1 (p, k0)}

/
{(

p2
0 − E2

1
) (
p2
0 − E2

2
) (

(p0 − k0)
2 − E2

1

)
×
(
(p0 − k0)

2 − E2
2

)}}
. (3.3)

The integral J0 is easily calculated by means of the residue
theorem

J0 = (2πi)
∑

i=5,6,7,8,11,12

res
(
p
(i)
0

)

= − e2

2π3k0

{
1

E1(k0 − 2E1)

[
m2 + k0E1 +

(g2τ)3/2

2

×
p2

⊥ +
g2τ

4
+ gτ1/2

√
p2

⊥ +
g2τ

4
− k0E1 +

g2τ

4√
p2

⊥ +
g2τ

4
(k0 − (E1 + E2))(k0 − (E1 − E2))




+
1

E2(k0 − 2E2)

[
m2 + k0E2 − (g2τ)3/2

2

×
p2

⊥ +
g2τ

4
− gτ1/2

√
p2

⊥ +
g2τ

4
− k0E2 +

g2τ

4√
p2

⊥ +
g2τ

4
(k0 − (E1 + E2))(k0 − (E2 − E1))




+
2

E0(k0 − 2E0)
[
m2 + k0E0

]}
+ (k0 → −k0). (3.4)

Using in (3.4) Sokhotski’s formula

1
x+ i0

= P
1
x

− iπδ(x)

in the branching points k0 = ±(2E0), ±(2E2), ±(2E1),
±(E1 ± E2) we find ∆J0, the jump value of J0:

∆J0 =
−e2

πk0

{
δ(k0 − 2E1)

E1

[
m2 + k0E1 +

(g2τ)3/2

2

×
p2

⊥ +
g2τ

4
+ gτ1/2

√
p2

⊥ +
g2τ

4
− k0E1 +

g2τ

4√
p2

⊥ +
g2τ

4
(k0 − (E1 − E2))(k0 − (E1 + E2))




+
δ(k0 − 2E2)

E2

[
m2 + k0E2 − (g2τ)3/2

2

×
p2

⊥ +
g2τ

4
− gτ1/2

√
p2

⊥ +
g2τ

4
− k0E2 +

g2τ

4√
p2

⊥ +
g2τ

4
(k0 − (E2 − E1))(k0 − (E1 + E2))




+
2δ(k0 − 2E0)

E0

[
m2 + k0E0

]
+

(g2τ)3/2

2

×


p

2
⊥ +

g2τ

4
+ gτ1/2

√
p2

⊥ +
g2τ

4
− k0E1 +

g2τ

4

E1

√
p2

⊥ +
g2τ

4
(k0 − (E1 − E2))(k0 − 2E1)

−
p2

⊥ +
g2τ

4
− gτ1/2

√
p2

⊥ +
g2τ

4
− k0E2 +

g2τ

4

E2

√
p2

⊥ +
g2τ

4
(k0 − (E2 − E1))(k0 − 2E2)




× δ(k0 − (E1 + E2)) +
(g2τ)3/2

2

×
p2

⊥ +
g2τ

4
+ gτ1/2

√
p2

⊥ +
g2τ

4
− k0E1 +

g2τ

4

E1

√
p2

⊥ +
g2τ

4
(k0 − (E1 + E2))(k0 − 2E1)

× δ(k0 − (E1 − E2)}Θ(k0)
+ (k0 → −k0)Θ(−k0). (3.5)

+Having integrated the expression (3.5) over p we find
the jump ∆Π(t) and then by means of (3.2) the imaginary
part of the Π(t) function:

ImΠ(t)

=
−e2

2πt1/2

{[
1
2

(
t+

t1
2
+

g2τ

2

)√
t − t2 − gτ1/2

2

×
(
t+

t1
2

− gτ1/2

2

)(
π

2
− arcsin

2gτ1/2
√
t − t1

)
+

g2τ

2

× t − g2τ
2√

t − t1 − g2τ

× ln
gτ1/2√t − t1

t − t1 − 2g2τ +
√
(t − t1 − g2τ)(t − t2)

]

× Θ(t − t2) +
[
1
2

(
t+ t1 +

g2τ

2

)√
t − t1 + gτ1/2π

4

×
(
t+

t1
2

− g2τ

2

)
− g2τ

2

(
t − g2τ

2

)
A(t)
]
Θ(t − t1)

−
[
g2τ

2
t

t − g2τ

√
t − t1 − g2τ

(
2 − g2τ

t

)



528 Sh. Mamedov: Photon polarization operator and quantum transitions in QCD vacuum

−
g2τ

(
t − g2τ

2

)
√
t − t1 − g2τ

× ln

√
t − t1 − g2τ −

√
t − t1 − g2τ

(
2 − g2τ

t

)

gτ1/2

√
1 − g2τ

t




× Θ(t − t5) − g2τ

2

(
1 − g2τ

t

)2

×
√
t2 − g4τ2√

2g2τt − g2τt1 − t2 − g4τ2
Θ(t − t6)

}
, (3.6)

A(t) =




1√
t − t1 − g2τ

ln
√
t − t1 +

√
t − t1 − g2τ

gτ1/2 ,

t > t1 + g2τ,
1√

t1 + g2τ − t

(
π

2
− arcsin

√
t − t1
gτ1/2

)
,

t < t1 + g2τ.

This formula is correct for all values of k0. If we would
consider only positive values of k0, we would have got
the same expression for ImΠ(t). It should be noted that
ImΠ(t) turns out to be finite, because the virtual quarks
are the main reason that the divergences did not con-
tribute to its expression due to the δ functions.

4 Turning over of quark color spin
and transitions

As we see from the list of branching points, the function
Π(t) has a new type of branching points, tk = (Ei −
Ej)2min, which arose due to taking into account the k0 < 0
area; these are absent in our previous works [4,6,7]. The
branching point t6 = (E1 − E2)2min corresponds to the
photon energy necessary for the quark transitions from
state E2 to state E1 (k0 = E1 − E2) and vice versa
(k0 = E2 − E1). Since E1 and E2 correspond to quark
energies, when the color spin of a quark is directed along
(the E1 state) or opposite (the E2 state) the color vector
(1.3), these transitions mean the turning over of the color
spin of the quark when absorbing (k0 = E1 − E2 > 0)
or emitting (k0 = E2 − E1 < 0) the photon. As we see,
the sign of the photon energy k0 is connected to its ab-
sorption and emission. So, a photon not having enough
energy for pair creation may be absorbed by a vacuum
quark having changed its color spin direction (transition
E2 → E1). Then the quark having returned to its lower
energy state (transition E1 → E2) emits this photon. The
photon “feels” a background due to the splitting energy
spectrum of the vacuum quarks. The probability of such
transitions may be defined by the last addendum of (3.6)
by means of the formula

W = − 1
k0

ImΠ(k2), (4.1)

Fig. 5. Graphically illustrating photon splitting into two or
three photons in the condensate background

and analogously for pair creation.
While analyzing δ(k0−(E1−E2)) we see that there are

connections between the transverse momenta of the quark
p⊥, the photon energy k0 and the field strength gτ1/2,

p2
⊥ =

1
4

(
k4
0

g2τ
− g2τ

)
, (4.2)

i.e. at fixed values of the photon energy and field strength,
only quarks whose transverse momentum obeys (4.2) may
make the transition E1 ↔ E2. In particular, when k2

0 =
g2τ only quarks resting on the (x, y) plane (p⊥ = 0) make
this transition and the origin of the singularity arising in
(3.6) at t = g2τ is connected with this circumstance.

The transition E1 ↔ E2 predicts another interesting
phenomenon connected with the QCD vacuum and may
be observed in experiment or in nature. This is photon
splitting into two or three photons in the condensate back-
ground:

k
(1)
0 = E1 + E2 = 2E2 + (E1 − E2) = k

(2)
0 + k

(3)
0 ,

k
′(1)
0 = 2E1 = (E1 + E2) + (E1 − E2) = k

(1)
0 + k

(3)
0 ,

k
′(1)
0 = 2E1 = 2E2 + 2 (E1 − E2) = k

(2)
0 + 2k(3)

0 .

Graphically it may be drawn as in Fig. 5.
There are vacuum state reconstruction effects in QED

[13]; while switching on a magnetic field the vacuum elec-
trons transit to a lower energy level. The analog of this ef-
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fect may be also exist in the QCD vacuum due to E1 → E2
transitions with photon emitting.

The branching points k0 = ±2E0,1,2 correspond to
pair creation (annihilation) when a quark and antiquark
from the same energy branch and k0 = ±(E0 + E1,2)
when they are from different ones. The branching points
k0 = ± (E1 − E0) and k0 = ± (E2 − E0) correspond to
the transitions E0 ↔ E1 and E0 ↔ E2. They have no
physical meaning for turning over of the color spin of
the quark. It should be noted that the poles at values
k0 = ± (E0 ± E1,2) in expression (3.4) of J0 did not arise,
and consequently there are no addenda in the expression
of ImΠ(t), see (3.6), corresponding to these branching
points. This is connected with (2.2), i.e. a full separation of
SU(2) and U(1) terms. This means that there are no tran-
sitions E0 ↔ E1,2 by absorbing or emitting a photon, and
no creation or annihilation of a quark and antiquark from
the energy branches E0 and E1,2. This is a result of the ac-
curacy of the color symmetry, and the quark’s color cannot
be changed by photon absorbing or emitting. If we con-
sider pure QCD, i.e. replace the electromagnetic vertices
eγµ with chromodynamic ones gγµλa/2 in (2.1), we get
the PO of a gluon (only the quark loop part). The equal-
ity (2.2) will not hold for the gluon PO, and transitions,
creations and annihilations k0 = ± (E1,2 ± E0) will take
place by gluon emitting or absorbing. The vacuum state
reconstruction effects in QCDmay occur due to E1,2 → E0
transitions as well.

5 Contribution of virtual quarks

The other new branching point is k0 = 0. The k0 = 0 point
arises in pure QED on investigating the electron–positron
vacuum as an ordinary singularity, not as a branching
point [2] because we do not consider the k0 < 0 area. As
we put k = 0 this means the photon is absent and quarks
are created and annihilated and make transitions sponta-
neously, in the photon’s absence. Having used Sokhotski’s
formula in (3.4) we find that the jump of J0 corresponding
to this branching point is

∆J0 = −e2i
π2

{
1
E2

1

×


m2 +

g2τ

4


1 + gτ1/2√

p2
⊥ +

g2τ

4

+
g2τ

4
1

p2
⊥ +

g2τ

4






+
1
E2

2


m2 +

g2τ

4


1 − gτ1/2√

p2
⊥ +

g2τ

4

+
g2τ

4
1

p2
⊥ +

g2τ

4






+
2m2

E2
0

}
δ(k0). (5.1)

As can be seen from (5.1) the δ function corresponding to
this pole is δ(k0) and is not connected with k0 and p. Of
course, this leads to a divergence of ∆Π(0) corresponding

to this point. Having integrated (5.1) over p and using
(3.2) we find ImΠ(0):

ImΠ(0) = − e2

2π2

(
m2 +

g2τ

4

)∫
d3p

(
1
E2

1
+

1
E2

2

)

− e2

π2m
2
∫

d3p
1
E2

0
+

e2

2π
(gτ1/2)Arsh

2gτ1/2

m

− e2

2π

(
g2τ

4

)2 1√
m2 +

g2τ

4

×
[
Arsh

2m
gτ1/2 +Arsh

2m2 + g2τ

gτ1/2m

]
. (5.2)

Since only virtual quarks lead to a divergence, the expres-
sion (5.2) may be considered as the contribution of virtual
quarks to the imaginary part of the PO and by means of
(4.1) it describes the probability of spontaneous pair cre-
ation and annihilation from the vacuum and spontaneous
transitions in the QCD vacuum.

The k0 < 0 area should be considered, and the branch-
ing point k0 = 0 should be taken into account in pure QED
for the investigation of the electron–positron vacuum as
well.
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